Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575357

RESUMO

Increasing numbers of antimalarial compounds are being identified that converge mechanistically at inhibition of cytoplasmic translation, regardless of the molecular target or mechanism. A deeper understanding of how their effectiveness as liver stage translation inhibitors relates to their chemoprotective potential could prove useful. Here, we probed that relationship using the Plasmodium berghei-HepG2 liver stage infection model. After determining translation inhibition EC50s for five compounds, we tested them at equivalent effective concentrations to compare the parasite response to, and recovery from, a brief period of translation inhibition in early schizogony, followed by parasites to 120 h post-infection to assess antiplasmodial effects of the treatment. We show compound-specific heterogeneity in single parasite and population responses to translation inhibitor treatment, with no single metric strongly correlated to the release of hepatic merozoites for all compounds. We also demonstrate that DDD107498 is capable of exerting antiplasmodial effects on translationally arrested liver stage parasites and uncover unexpected growth dynamics during the liver stage. Our results demonstrate that translation inhibition efficacy does not determine antiplasmodial efficacy for these compounds.


Assuntos
Antimaláricos , Parasitos , Animais , Plasmodium berghei/fisiologia , Antimaláricos/farmacologia , Fígado , Merozoítos/fisiologia
2.
Sci Rep ; 14(1): 4682, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409185

RESUMO

Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.


Assuntos
Antimaláricos , Malária Cerebral , Animais , Camundongos , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/prevenção & controle , Malária Cerebral/parasitologia , Angiotensina II/farmacologia , Angiotensina II/uso terapêutico , Modelos Animais de Doenças , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Plasmodium berghei/fisiologia , Camundongos Endogâmicos C57BL
3.
Nat Commun ; 15(1): 1422, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365823

RESUMO

A novel cellular response of midgut progenitors (stem cells and enteroblasts) to Plasmodium berghei infection was investigated in Anopheles stephensi. The presence of developing oocysts triggers proliferation of midgut progenitors that is modulated by the Jak/STAT pathway and is proportional to the number of oocysts on individual midguts. The percentage of parasites in direct contact with enteroblasts increases over time, as progenitors proliferate. Silencing components of key signaling pathways through RNA interference (RNAi) that enhance proliferation of progenitor cells significantly decreased oocyst numbers, while limiting proliferation of progenitors increased oocyst survival. Live imaging revealed that enteroblasts interact directly with oocysts and eliminate them. Midgut progenitors sense the presence of Plasmodium oocysts and mount a cellular defense response that involves extensive proliferation and tissue remodeling, followed by oocysts lysis and phagocytosis of parasite remnants by enteroblasts.


Assuntos
Anopheles , Malária , Parasitos , Plasmodium , Animais , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Malária/parasitologia , Anopheles/parasitologia , Oocistos , Células-Tronco , Plasmodium berghei/fisiologia
4.
Parasitol Int ; 100: 102856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199522

RESUMO

The Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice. However, the function of H3.3 through multiple developmental stages in Plasmodium remains unknown. To examine the function of H3.3, h3.3-deficient mutants (Δh3.3) were generated in P. berghei. The deletion of h3.3 was not lethal in blood stage parasites, although it had a minor effect of the growth rate in blood stage; however, the in vitro ookinete conversion rate was significantly reduced, and the production of the degenerated form was increased. Regarding the mosquito stage development of Δh3.3, oocysts number was significantly reduced, and no sporozoite production was observed. The h3.3 gene complemented mutant have normal development in mosquito stage producing mature oocysts and salivary glands contained sporozoites, and interestingly, the majority of H3.3 protein was detected in female gametocytes. However, Δh3.3 male and female gametocyte production levels were comparable to the wild-type levels. Transcriptome analysis of Δh3.3 male and female gametocytes revealed the upregulation of several male-specific genes in female gametocytes, suggesting that H3.3 functions as a transcription repressor of male-specific genes to maintain sexual identity in female gametocytes. This study provides new insights into the molecular biology of histone variants H3.3 which plays a critical role on zygote-to-oocyst development in primitive unicellular eukaryotes.


Assuntos
Malária , Parasitos , Plasmodium , Doenças dos Roedores , Masculino , Feminino , Animais , Camundongos , Oocistos , Histonas/genética , Zigoto/metabolismo , Epigênese Genética , Esporozoítos/fisiologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
mSphere ; 8(4): e0058722, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272704

RESUMO

During invasion, Plasmodium parasites secrete proteins from rhoptry and microneme apical end organelles, which have crucial roles in attaching to and invading target cells. A sporozoite stage-specific gene silencing system revealed that rhoptry neck protein 2 (RON2), RON4, and RON5 are important for sporozoite invasion of mosquito salivary glands. Here, we further investigated the roles of RON4 during sporozoite infection of the liver in vivo. Following intravenous inoculation of RON4-knockdown sporozoites into mice, we demonstrated that sporozoite RON4 has multiple functions during sporozoite traversal of sinusoidal cells and infection of hepatocytes. In vitro infection experiments using a hepatoma cell line revealed that secreted RON4 is involved in sporozoite adhesion to hepatocytes and has an important role in the early steps of hepatocyte infection. In addition, in vitro motility assays indicated that RON4 is required for sporozoite attachment to the substrate and the onset of migration. These findings indicate that RON4 is crucial for sporozoite migration toward and invasion of hepatocytes via attachment ability and motility.IMPORTANCEMalarial parasite transmission to mammals is established when sporozoites are inoculated by mosquitoes and migrate through the bloodstream to infect hepatocytes. Many aspects of the molecular mechanisms underpinning migration and cellular invasion remain largely unelucidated. By applying a sporozoite stage-specific gene silencing system in the rodent malarial parasite, Plasmodium berghei, we demonstrated that rhoptry neck protein 4 (RON4) is crucial for sporozoite infection of the liver in vivo. Combined with in vitro investigations, it was revealed that RON4 functions during a crossing of the sinusoidal cell layer and invading hepatocytes, at an early stage of liver infection, by mediating the sporozoite capacity for adhesion and the onset of motility. Since RON4 is also expressed in Plasmodium merozoites and Toxoplasma tachyzoites, our findings contribute to understanding the conserved invasion mechanisms of Apicomplexa parasites.


Assuntos
Malária , Plasmodium berghei , Esporozoítos , Animais , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Malária/metabolismo , Malária/parasitologia , Malária/patologia , Esporozoítos/fisiologia , Proteínas de Protozoários/metabolismo , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Hepatócitos/patologia
6.
PLoS Pathog ; 19(3): e1011261, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928686

RESUMO

Invasion of host cells by apicomplexan parasites such as Toxoplasma and Plasmodium spp requires the sequential secretion of the parasite apical organelles, the micronemes and the rhoptries. The claudin-like apicomplexan microneme protein (CLAMP) is a conserved protein that plays an essential role during invasion by Toxoplasma gondii tachyzoites and in Plasmodium falciparum asexual blood stages. CLAMP is also expressed in Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, but its role in this stage is still unknown. CLAMP is essential for Plasmodium blood stage growth and is refractory to conventional gene deletion. To circumvent this obstacle and study the function of CLAMP in sporozoites, we used a conditional genome editing strategy based on the dimerisable Cre recombinase in the rodent malaria model parasite P. berghei. We successfully deleted clamp gene in P. berghei transmission stages and analyzed the functional consequences on sporozoite infectivity. In mosquitoes, sporozoite development and egress from oocysts was not affected in conditional mutants. However, invasion of the mosquito salivary glands was dramatically reduced upon deletion of clamp gene. In addition, CLAMP-deficient sporozoites were impaired in cell traversal and productive invasion of mammalian hepatocytes. This severe phenotype was associated with major defects in gliding motility and with reduced shedding of the sporozoite adhesin TRAP. Expansion microscopy revealed partial colocalization of CLAMP and TRAP in a subset of micronemes, and a distinct accumulation of CLAMP at the apical tip of sporozoites. Collectively, these results demonstrate that CLAMP is essential across invasive stages of the malaria parasite, and support a role of the protein upstream of host cell invasion, possibly by regulating the secretion or function of adhesins in Plasmodium sporozoites.


Assuntos
Culicidae , Malária , Animais , Esporozoítos/metabolismo , Micronema , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Culicidae/parasitologia , Mamíferos , Malária/parasitologia
7.
PLoS Pathog ; 19(2): e1010890, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780562

RESUMO

Gametocyte development is a critical step in the life cycle of Plasmodium. Despite the number of studies on gametocyte development that have been conducted, the molecular mechanisms regulating this process remain to be fully understood. This study investigates the functional roles of two female-specific transcriptional regulators, PbAP2-FG2 and PbAP2R-2, in P. berghei. Knockout of pbap2-fg2 or pbap2r-2 impairs female gametocyte development, resulting in developmental arrest during ookinete development. ChIP-seq analyses of these two factors indicated their colocalization on the genome, suggesting that they function as a complex. These analyses also revealed that their target genes contained a variety of genes, including both male and female-enriched genes. Moreover, differential expression analyses showed that these target genes were upregulated through the disruption of pbap2-fg2 or pbap2r-2, indicating that these two factors function as a transcriptional repressor complex in female gametocytes. Formation of a complex between PbAP2-FG2 and PbAP2R-2 was confirmed by RIME, a method that combines ChIP and MS analysis. In addition, the analysis identified a chromatin regulator PbMORC as an interaction partner of PbAP2-FG2. Comparative target analysis between PbAP2-FG2 and PbAP2-G demonstrated a significant overlap between their target genes, suggesting that repression of early gametocyte genes activated by PbAP2-G is one of the key roles for this female transcriptional repressor complex. Our results indicate that the PbAP2-FG2-PbAP2R-2 complex-mediated repression of the target genes supports the female differentiation from early gametocytes.


Assuntos
Plasmodium berghei , Proteínas de Protozoários , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo
8.
mBio ; 14(2): e0339122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36852995

RESUMO

Cerebral malaria (CM), the deadliest complication of Plasmodium infection, is a complex and unpredictable disease. However, our understanding of the host and parasite factors that cause CM is limited. Using a mouse model of CM, experimental CM (ECM), we performed a three-way comparison between ECM-susceptible C57BL/6 mice infected with ECM-causing Plasmodium ANKA parasites [ANKA(C57BL/6)], ECM-resistant BALB/c mice infected with Plasmodium ANKA [ANKA(BALB/c)], and C57BL/6 mice infected with Plasmodium NK65 that does not cause ECM [NK65(C57BL/6)]. All ANKA(C57BL/6) mice developed CM. In contrast, in ANKA(BALB/c) and NK65(C57BL/6), infections do not result in CM and proceed similarly in terms of parasite growth, disease course, and host immune response. However, parasite gene expression in ANKA(BALB/c) was remarkably different than that in ANKA(C57BL/6) but similar to the gene expression in NK65(C57BL/6). Thus, Plasmodium ANKA has an ECM-specific gene expression profile that is activated only in susceptible hosts, providing evidence that the host has a critical influence on the outcome of infection. IMPORTANCE Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Thus far, there are no vaccines against this deadly disease, and we still do not know why fatal brain damage occurs in some children while others have milder, self-limiting disease progression. Our research provides an important clue to this problem. Here, we showed that the genetic background of the host has an important role in determining the course and the outcome of the disease. Our research also identified parasite molecules that can potentially be targeted in vaccination and therapy approaches.


Assuntos
Malária Cerebral , Animais , Camundongos , Malária Cerebral/parasitologia , Plasmodium berghei/fisiologia , Camundongos Endogâmicos C57BL , Expressão Gênica , Modelos Animais de Doenças
9.
Nat Commun ; 13(1): 3747, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768411

RESUMO

Severe malaria can manifest itself with a variety of well-recognized clinical phenotypes that are highly predictive of death - severe anaemia, coma (cerebral malaria), multiple organ failure, and respiratory distress. The reasons why an infected individual develops one pathology rather than another remain poorly understood. Here we use distinct rodent models of infection to show that the host microbiota is a contributing factor for the development of respiratory distress syndrome and host mortality in the context of malaria infections (malaria-associated acute respiratory distress syndrome, MA-ARDS). We show that parasite sequestration in the lung results in sustained immune activation. Subsequent production of the anti-inflammatory cytokine IL-10 by T cells compromises microbial control, leading to severe lung disease. Notably, bacterial clearance with linezolid, an antibiotic commonly used in the clinical setting to control lung-associated bacterial infections, prevents MA-ARDS-associated lethality. Thus, we propose that the host's anti-inflammatory response to limit tissue damage can result in loss of microbial control, which promotes MA-ARDS. This must be considered when intervening against life-threatening respiratory complications.


Assuntos
Malária , Microbiota , Síndrome do Desconforto Respiratório , Animais , Modelos Animais de Doenças , Pulmão/patologia , Malária/complicações , Malária/parasitologia , Plasmodium berghei/fisiologia
10.
Front Cell Infect Microbiol ; 12: 899581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677654

RESUMO

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is increasingly gaining recognition as a severe malaria complication because of poor prognostic outcomes, high lethality rate, and limited therapeutic interventions. Unfortunately, invasive clinical studies are challenging to conduct and yields insufficient mechanistic insights. These limitations have led to the development of suitable MA-ARDS experimental mouse models. In patients and mice, MA-ARDS is characterized by edematous lung, along with marked infiltration of inflammatory cells and damage of the alveolar-capillary barriers. Although, the pathogenic pathways have yet to be fully understood, the use of different experimental mouse models is fundamental in the identification of mediators of pulmonary vascular damage. In this review, we discuss the current knowledge on endothelial activation, leukocyte recruitment, leukocyte induced-endothelial dysfunction, and other important findings, to better understand the pathogenesis pathways leading to endothelial pulmonary barrier lesions and increased vascular permeability. We also discuss how the advances in imaging techniques can contribute to a better understanding of the lung lesions induced during MA-ARDS, and how it could aid to monitor MA-ARDS severity.


Assuntos
Malária , Síndrome do Desconforto Respiratório , Animais , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/fisiologia , Síndrome do Desconforto Respiratório/etiologia
11.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162991

RESUMO

Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive signaling pathways for proper differentiation and transformation. Several protein phosphatases, including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in cellular processes via dynamic interactions with a vast number of binding partners that contribute to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses. Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our findings confirm previously known physical interactions of PP1c and reveal enrichment of common biological processes linked to cellular component assembly in both schizonts and gametocytes to biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes. Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for alternative therapeutic strategies.


Assuntos
Malária/parasitologia , Plasmodium berghei/fisiologia , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Animais , Sítios de Ligação , Cromatografia Líquida , Estágios do Ciclo de Vida , Masculino , Camundongos , Organismos Geneticamente Modificados , Plasmodium berghei/patogenicidade , Domínios Proteicos , Mapas de Interação de Proteínas , Proteína Fosfatase 1/genética , Proteínas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espectrometria de Massas em Tandem
12.
PLoS Biol ; 20(1): e3001515, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025886

RESUMO

Anopheles gambiae melanization-based refractoriness to the human malaria parasite Plasmodium falciparum has rarely been observed in either laboratory or natural conditions, in contrast to the rodent model malaria parasite Plasmodium berghei that can become completely melanized by a TEP1 complement-like system-dependent mechanism. Multiple studies have shown that the rodent parasite evades this defense by recruiting the C-type lectins CTL4 and CTLMA2, while permissiveness to the human malaria parasite was not affected by partial depletion of these factors by RNAi silencing. Using CRISPR/Cas9-based CTL4 knockout, we show that A. gambiae can mount melanization-based refractoriness to the human malaria parasite, which is independent of the TEP1 complement-like system and the major anti-Plasmodium immune pathway Imd. Our study indicates a hierarchical specificity in the control of Plasmodium melanization and proves CTL4 as an essential host factor for P. falciparum transmission and one of the most potent mosquito-encoded malaria transmission-blocking targets.


Assuntos
Anopheles/imunologia , Lectinas Tipo C/genética , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Animais , Anopheles/genética , Anopheles/parasitologia , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lectinas Tipo C/metabolismo , Melaninas/genética , Melaninas/imunologia
13.
mBio ; 12(6): e0309121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903042

RESUMO

Malaria is caused when Plasmodium sporozoites are injected along with saliva by an anopheline mosquito into the dermis of a vertebrate host. Arthropod saliva has pleiotropic effects that can influence local host responses, pathogen transmission, and exacerbation of the disease. A mass spectrometry screen identified mosquito salivary proteins that are associated with Plasmodium sporozoites during saliva secretions. In this study, we demonstrate that one of these salivary antigens, Anopheles gambiae sporozoite-associated protein (AgSAP), interacts directly with Plasmodium falciparum and Plasmodium berghei sporozoites. AgSAP binds to heparan sulfate and inhibits local inflammatory responses in the skin. The silencing of AgSAP in mosquitoes reduces their ability to effectively transmit sporozoites to mice. Moreover, immunization with AgSAP decreases the Plasmodium burden in mice that are bitten by Plasmodium-infected mosquitoes. These data suggest that AgSAP facilitates early Plasmodium infection in the vertebrate host and serves as a target for the prevention of malaria. IMPORTANCE Malaria is a vector-borne disease caused by Plasmodium sporozoites. When an anopheline mosquito bites its host, it releases Plasmodium sporozoites as well as saliva components. Mosquito proteins have the potential to serve as antigens to prevent or influence malaria without directly targeting the pathogen. This may help set a new paradigm for vaccine development. In this study, we have elucidated the role of a novel salivary antigen, named Anopheles gambiae sporozoite-associated protein (AgSAP). The results presented here show that AgSAP interacts with Plasmodium falciparum and Plasmodium berghei sporozoites and modulates local inflammatory responses in the skin. Furthermore, our results show that AgSAP is a novel mosquito salivary antigen that influences the early stages of Plasmodium infection in the vertebrate host. Individuals living in countries where malaria is endemic generate antibodies against AgSAP, which indicates that AgSAP can serve as a biomarker for disease prevalence and epidemiological analysis.


Assuntos
Anopheles/imunologia , Proteínas de Insetos/imunologia , Malária/parasitologia , Mosquitos Vetores/imunologia , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Anopheles/genética , Anopheles/parasitologia , Feminino , Humanos , Proteínas de Insetos/genética , Malária/imunologia , Malária/transmissão , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas e Peptídeos Salivares/genética , Esporozoítos/genética , Esporozoítos/fisiologia
14.
Sci Rep ; 11(1): 23640, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880324

RESUMO

The continued existence of Plasmodium parasites in physiologically distinct environments during their transmission in mosquitoes and vertebrate hosts requires effector proteins encoded by parasite genes to provide adaptability. Parasites utilize their robust stress response system involving heat shock proteins for their survival. Molecular chaperones are involved in maintaining protein homeostasis within a cell during stress, protein biogenesis and the formation of protein complexes. Due to their critical role in parasite virulence, they are considered targets for therapeutic interventions. Our results identified a putative P. berghei heat shock protein (HSP) belonging to the HSP40 family (HspJ62), which is abundantly induced upon heat stress and expressed during all parasite stages. To determine the role HspJ62, a gene-disrupted P. berghei transgenic line was developed (ΔHspJ62), which resulted in disruption of gametocyte formation. Such parasites were unable to form subsequent sexual stages because of disrupted gametogenesis, indicating the essential role of HspJ62 in gametocyte formation. Transcriptomic analysis of the transgenic line showed downregulation of a number of genes, most of which were specific to male or female gametocytes. The transcription factor ApiAP2 was also downregulated in ΔHspJ62 parasites. Our findings suggest that the downregulation of ApiAP2 likely disrupts the transcriptional regulation of sexual stage genes, leading to impaired gametogenesis. This finding also highlights the critical role that HspJ62 indirectly plays in the development of P. berghei sexual stages and in facilitating the conversion from the asexual blood stage to the sexual stage. This study characterizes the HspJ62 protein as a fertility factor because parasites lacking it are unable to transmit to mosquitoes. This study adds an important contribution to ongoing research aimed at understanding gametocyte differentiation and formation in parasites. The molecule adds to the list of potential drug targets that can be targeted to inhibit parasite sexual development and consequently parasite transmission.


Assuntos
Gametogênese/fisiologia , Proteínas de Choque Térmico/fisiologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Feminino , Proteínas de Choque Térmico/genética , Temperatura Alta , Estágios do Ciclo de Vida , Masculino
15.
Malar J ; 20(1): 462, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906158

RESUMO

BACKGROUND: Liver disease is a common feature of malaria in pregnancy, but its pathogenesis remains unclear. METHODS: To understand the pathogenesis of liver disease during malaria in pregnancy, comparative proteomic analysis of the liver in a mouse model of malaria in pregnancy was performed. RESULTS: Decreased levels of mitochondrial and peroxisomal proteins were observed in the livers of pregnant mice infected with the lethal rodent malaria parasite Plasmodium berghei strain NK65. By contrast, increased levels of perilipin-2, amyloid A-1, and interferon (IFN)-γ signalling pathway-related proteins were observed in the livers of infected pregnant mice, suggesting that IFN-γ signalling may contribute to the development of liver disease during malaria in pregnancy. IFN-γ signalling is a potential trigger of inducible nitric oxide synthase (iNOS) expression. Liver disease associated with microvesicular fatty infiltration and elevated liver enzymes in pregnant wild-type mice infected with malaria parasites was improved by iNOS deficiency. CONCLUSIONS: In this study, a causative role of iNOS in liver disease associated with microvesicular fatty infiltration during malaria in pregnancy was demonstrated. These findings provide important insight for understanding the role of iNOS-mediated metabolic responses and the pathogenesis of high-risk liver diseases in pregnancy, such as acute fatty liver.


Assuntos
Fígado Gorduroso/metabolismo , Malária/complicações , Óxido Nítrico/metabolismo , Plasmodium berghei/fisiologia , Complicações Parasitárias na Gravidez/metabolismo , Doença Aguda , Animais , Modelos Animais de Doenças , Feminino , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Complicações Parasitárias na Gravidez/parasitologia
16.
FASEB J ; 35(12): e21997, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719814

RESUMO

The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.


Assuntos
Antígenos de Diferenciação de Linfócitos B/química , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/química , Inflamação/prevenção & controle , Fígado/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Malária Cerebral/prevenção & controle , Plasmodium berghei/fisiologia , Animais , Antígenos de Diferenciação de Linfócitos B/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Fígado/imunologia , Fígado/parasitologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Malária Cerebral/etiologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Malar J ; 20(1): 430, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717635

RESUMO

BACKGROUND: Plasmodium sporozoites are the highly motile forms of malaria-causing parasites that are transmitted by the mosquito to the vertebrate host. Sporozoites need to enter and cross several cellular and tissue barriers for which they employ a set of surface proteins. Three of these proteins are members of the thrombospondin related anonymous protein (TRAP) family. Here, potential additive, synergistic or antagonistic roles of these adhesion proteins were investigated. METHODS: Four transgenic Plasmodium berghei parasite lines that lacked two or all three of the TRAP family adhesins TRAP, TLP and TREP were generated using positive-negative selection. The parasite lines were investigated for their capacity to attach to and move on glass, their ability to egress from oocysts and their capacity to enter mosquito salivary glands. One strain was in addition interrogated for its capacity to infect mice. RESULTS: The major phenotype of the TRAP single gene deletion dominates additional gene deletion phenotypes. All parasite lines including the one lacking all three proteins were able to conduct some form of active, if unproductive movement. CONCLUSIONS: The individual TRAP-family adhesins appear to play functionally distinct roles during motility and infection. Other proteins must contribute to substrate adhesion and gliding motility.


Assuntos
Plasmodium berghei/fisiologia , Proteínas de Protozoários/genética , Esporozoítos/fisiologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Plasmodium berghei/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/genética
18.
Exp Cell Res ; 406(2): 112764, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358525

RESUMO

Protein kinases of both the parasite and the host are crucial in parasite invasion and survival and might act as drug targets against drug-resistant malaria. STK35L1 was among the top five hits in kinome-wide screening, suggesting its role in malaria's liver stage. However, the role of host STK35L1 in malaria remains elusive. In this study, we found that STK35L1 was highly upregulated during the infection of Plasmodium berghei (P. berghei) in HepG2 cells and mice liver, and knockdown of STK35L1 remarkably suppressed the sporozoites' infection in HepG2 cells. We showed that STAT3 is upregulated and phosphorylated during P. berghei sporozoites' infection, and STAT3 activation is required for both the upregulation of STK35L1 and STAT3. Furthermore, we found that ten cell cycle genes were upregulated in the sporozoite-infected hepatocytes. Knockdown of STK35L1 inhibited the basal expression of these genes except CDKN3 and GTSE1 in HepG2 cells. Thus, we identified STK35L1 as a host kinase that plays an obligatory role in malaria's liver stage and propose that it may serve as a potential drug target against drug-resistant malaria.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Esporozoítos/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Feminino , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética
19.
Immunology ; 164(4): 737-753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34407221

RESUMO

Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterized by CD8+ T-cell accumulation within the brain. Whilst the dynamics of CD8+ T-cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasite-specific CD8+ T cells upon resolution of ECM is not understood. In this study, we show that memory OT-I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbA-OVA infection. Whereas memory OT-I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OT-I cells within the brain post-PbA-OVA infection displayed an enriched CD69+ CD103- profile and expressed low levels of T-bet. OT-I cells within the brain were excluded from short-term intravascular antibody labelling but were targeted effectively by longer-term systemically administered antibodies. Thus, the memory OT-I cells were extravascular within the brain post-ECM but were potentially not resident memory cells. Importantly, whilst memory OT-I cells exhibited strong reactivation during secondary PbA-OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbA-OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain post-ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ T-cell populations within the brain and other tissues during repeat Plasmodium infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interações Hospedeiro-Parasita/imunologia , Malária/imunologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Animais , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Quimiotaxia de Leucócito/imunologia , Suscetibilidade a Doenças , Epitopos de Linfócito T/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Matriz Extracelular , Memória Imunológica , Imunofenotipagem , Estágios do Ciclo de Vida , Ativação Linfocitária/imunologia , Malária/metabolismo , Malária/patologia , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/imunologia
20.
Malar J ; 20(1): 297, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215257

RESUMO

BACKGROUND: Recent genome wide analysis studies have identified a strong association between single nucleotide variations within the human ATP2B4 gene and susceptibility to severe malaria. The ATP2B4 gene encodes the plasma membrane calcium ATPase 4 (PMCA4), which is responsible for controlling the physiological level of intracellular calcium in many cell types, including red blood cells (RBCs). It is, therefore, postulated that genetic differences in the activity or expression level of PMCA4 alters intracellular Ca2+ levels and affects RBC hydration, modulating the invasion and growth of the Plasmodium parasite within its target host cell. METHODS: In this study the course of three different Plasmodium spp. infections were examined in mice with systemic knockout of Pmca4 expression. RESULTS: Ablation of PMCA4 reduced the size of RBCs and their haemoglobin content but did not affect RBC maturation and reticulocyte count. Surprisingly, knockout of PMCA4 did not significantly alter peripheral parasite burdens or the dynamics of blood stage Plasmodium chabaudi infection or reticulocyte-restricted Plasmodium yoelii infection. Interestingly, although ablation of PMCA4 did not affect peripheral parasite levels during Plasmodium berghei infection, it did promote slight protection against experimental cerebral malaria, associated with a minor reduction in antigen-experienced T cell accumulation in the brain. CONCLUSIONS: The finding suggests that PMCA4 may play a minor role in the development of severe malarial complications, but that this appears independent of direct effects on parasite invasion, growth or survival within RBCs.


Assuntos
Resistência à Doença/genética , Malária/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Plasmodium/fisiologia , Animais , Membrana Celular , Malária/sangue , Malária/parasitologia , Malária Cerebral/genética , Malária Cerebral/parasitologia , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Plasmodium berghei/fisiologia , Plasmodium chabaudi/fisiologia , Plasmodium yoelii/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...